Objectifs:

- Identifier les groupes caractéristiques : alcool, aldéhyde, cétone, acide carboxylique et amine.
- Réaliser quelques tests de reconnaissance de ces groupes caractéristiques.

I) Les groupes caractéristiques.

Entourer les groupes caractéristiques des molécules suivantes.

Formule	CH ₃ – CH ₂ – OH	CH ₃ -CH ₂ -COOH	$CH_3 - CH_2 - CH_2 - NH_2$
Nom de la famille	Alcool	Acide carboxylique	Amine

Formule	CH_3-CH_2-C H	$ \begin{array}{c} O \\ II \\ CH_3 - CH_2 - C - CH_3 \end{array} $
Nom de la famille	Aldéhyde	Cétone

II) Test de reconnaissance des alcools.

Utilisation d'un alcootest...Noter l'observation et rédiger une conclusion.

III) Test de reconnaissance des acides carboxyliques et des amines.

Les solutions aqueuses d'acides carboxyliques sont **acides** alors que celles des amines sont **basiques**.

Vous disposer de deux bouteilles A et B et de papier pH. L'une des bouteilles contient une solution aqueuse d'acide carboxylique, l'autre une solution aqueuse d'amine.

Réaliser une expérience et identifier le contenu de ces deux bouteilles.

IV) Tests de reconnaissance des aldéhydes et des cétones.

1) Test de reconnaissance commun aux cétones et aux aldéhydes

- Placer un peu de 2,4-DNPH dans deux tubes à essais.
- Dans le premier, ajouter quelques gouttes d'une cétone (propanone).
- Dans le deuxième, ajouter quelques gouttes d'un aldéhyde. (méthanal)
- Noter vos observations et rédiger une conclusion.
- Jeter dans le bidon de récupération des SOLVANTS.

2) Test de reconnaissance propre aux aldéhydes : Test à la liqueur de Fehling

- Dans un premier tube à essais, verser quelques mL (environ ¼ du tube) de liqueur de Fehling.
- Ajouter un peu d'un aldéhyde.
- Dans un deuxième tube à essais, verser également quelques mL de liqueur de Fehling.
- Y ajouter un peu d'une cétone.
- Chauffer les deux tubes au bain marie.
- Noter vos observations et rédiger une conclusion.
- Jeter dans le bidon de récupération des BASES.

3) Autre test de reconnaissance propre aux aldéhydes : Le miroir d'argent

Le réactif utilisé pour cette expérience est le réactif de Tollens qu'il faut préparer.

Préparation du réactif de Tollens.

- Dans un tube à essais, verser quelques mL d'une solution de nitrate d'argent à 0,2 mol.L⁻¹.
- Ajouter une solution d'ammoniaque à 1 mol.L⁻¹ jusqu'à disparition du précipité.

Réalisation du test.

- Ajouter dans le tube environ quelques mL d'un aldéhyde.
- Chauffer au bain marie.
- Noter vos observations et expliquer pourquoi ce test s'appelle le test du miroir d'argent ?
- Remarque : ce test n'est positif qu'avec les aldéhydes.

TESTS DE RECONNAISSANCE DE QUELQUES GROUPES CARACTERISTIQUES

Produits:

- Une petite bouteille contenant un acide carboxylique étiquetée A.
- Une petite bouteille contenant une amine (basique) étiquetée B.
- Une petite bouteille contenant un aldéhyde : Méthanal.
- Une petite bouteille contenant une cétone : Propanone.
- Liqueur de Fehling.
- nitrate d'argent à 0,2 mol.L⁻¹.
- Ammoniaque à 1 mol.L⁻¹
- 2,4-DNPH.
- Papier pH.

Matériel:

- 5 Tubes à essais.
- Goupillon.
- Serpillère.

Bureau:

- Bain marie.
- Ethanol.